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J .  Phys. C: Solid State Phys., 16 (1983) 3547-3562. R n t e d  in Great Britain 

An Ising ferrimagnetic model on a triangular lattice 

D A Lavis and A G Quinn 
Mathematics Department, Chelsea College, University of London. 552 King‘s Road. 
London SW10. UK 

Received 24 December 1982 

Abstract. We study a two-dimensional king model on a triangular lattice for which the lattice 
is divided into two sublattices, a honeycomb populated by ions of one species which interact 
with each other ferromagnetically and the remaining interstitial sites occupied by ions of 
different magnetic moment which interact with the first species antiferromagnetically. Exact 
results for the critical temperature and magnetisation on the zero-field axis are derived in 
special cases from the known results for the isotropic ferromagnetic Ising model. A real- 
space renormalisation method is used to obtain phase diagrams in the field-temperature 
plane together with the magnetisation and susceptibility on the zero-field axis. These latter 
exhibit the characteristic features of a ferrimagnetic system. 

1. Introduction 

Solids which have a net magnetic moment due to the incomplete cancellation of anti- 
ferromagnetically arranged spins are called ‘ferrimagnets’ of which a significant 
subgroup are the ferrites, these being ferromagnetic oxides with iron as their main 
metallic component. As was first shown by Nee1 (see e.g. NCel1948,1953) the magnetic 
ions in a ferrimagnet are situated at the sites of non-equivalent sublattices. In, for 
example, ferrites with spinel structure the lattice divides into two sublattices, one 
consisting of twice as many sites as the other. In ferrimagnets the exchange interactions 
are predominantly indirect. Differences in exchange energies between ions on different 
sublattices arise either because the lattice sites are occupied by ions of different types or 
because of the effects of different environments of non-magnetic atoms (see e.g. Wolf 
1961, Martin 1967). One characteristic property of ferrimagnets is the shape of the 
inverse zero-field susceptibility curve above the critical temperature. Unlike the case of 
a ferromagnet this is normally concave towards the temperature axis and its high- 
temperature asymptote intercepts the axis at a point below the critical temperature. 
Another property of many ferrimagnets is the occurrence of a compensation tempera- 
ture. This is a point on the zero-field axis below the critical temperature at which the 
magnetisation falls to zero owing to the cancellation of the sublattice magnetisations. 

In this paper we consider a simple ferrimagnetic model on a triangular lattice of N 
sites. The lattice is divided into a honeycomb sublattice b of 2N/3  sites and the triangular 
sublattice a consisting of the remaining N/3 sites of the original lattice. The sites of 
sublattices a and b are occupied by ions of magnetic moments Ea and E b  respectively. 
The nearest-neighbour exchange energies are and - J a b  for b-b and a-b pairs 
respectively (there are of course no nearest-neighbour a-a pairs of sites). The interaction 

@ 1983 The Institute of Physics 3547 



3548 D A Lavis and A G Quinn 

within the b sublattice is ferromagnetic ( J b b  > 0) and the interaction between sublattices 
is antiferromagnetic ( J a b  < 0). We shall also consider the two limiting cases where either 
J b b  or J a b ,  but not both, is zero. This is a model which has been considered by Bell 
(1974a, b) using high-temperature series expansions and, in some special cases, exact 
results. The purpose of this paper is to extend Bell’s analysis of the exact results and to 
develop a real-space renormalisation-group (RSRG) method for the model. 

2. Detailed model 

Let an elementary nearest-neighbour triangle of the lattice consist of an a site with an 
ion in spin state S a  and two b sites b l  and b2 with ions in spin states S b l  and S b 2  respectively. 
The possible values of S a ,  S b l  and S b 2  are + 1 and - 1 corresponding respectively to 
parallel and antiparallel alignment to the external magnetic field H .  The Hamiltonian 
of the system is then 

where 
XA = - [ i ( J a b S a S b l  + J a b S a S b 2  + J b b S b l S b Z )  + m($sa + & S b l  + & S b 2 ) ]  (2.16) 

and the sum is over all the elementary triangles of the lattice. 
The six possible ground states of the system are listed in table 1. The phases F(+) and 

F(-) are ferromagnetic, F(+) being more or less stable than F(-) at zero temperature 
according as the external magnetic field is greater or less than zero. When H = 0 the 
ferromagnetic phase is denoted by F. The degeneracy of this phase is 2 and it can be 
considered as the coexistence between large regions of the lattice in phases F(+) and ~ ( - 1 .  
The phases AF(+) and AF(-) are antiferromagnetic with respect to the spin alignment 

x=xa tA  (2. la)  
A 

Table 1. The ground states of the system. 

Name Configuration Degeneracy w, Hamiltonian Se,, per A 

-i 
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the b sublattice, AF(+) being more or less stable than AF(-) at zero temperature according 
as the external field is greater or less than zero. When H = 0 the antiferromagnetic phase 
is denoted by AF. In this phase the directions of the spins on sublattice a are random. 
Except in the special case J a b  = Jbb the degeneracy of this phase is 2(l + N / 3 ) .  When Jab = 
J b b  the distinction between sublattice sites disappears and we have the standard anti- 
ferromagnetic Ising model with ground-state degeneracy (1 .3813qN (Wannier 1950). 
The phases FI(+) and FI(-) are ferrimagnetic. When 2 f b  > fa FI(+) is more or less stable 
than FI(-) at zero temperature according as the external field is greater or less than zero. 
If 2 f b  < f a  the converse is the case. When H = 0 or 2 f b  = f a  the ferrimagnetic phase is 
denoted by FI. This phase again has a degeneracy of 2 and consists of large regions of 
coexistence of FI(') and FI(-). We define the parameters 

and 

and the reduced temperature and field variables 

r =  f a / &  (2.2b) 

and 

= f b H / ( J b b  - J a b )  (2.3b) 

respectively where k is Boltzmann's constant and Tis the thermodynamic temperature. 
As indicated in 0 1 we shall take 0 S 8 S 1 for which the stable ground state at = 

0 is FI. In terms of the parameter r the stable ground states, with fi # 0, can be 
obtained from table 1. They are, for r < 2 ,  F(-), FI(-), FI(+) ,  F(+) according as < 
-68/r ,  -68/r < H < 0, 0 < < 68/r,  68/r < H and, for r > 2 ,  F(-), F I ( ~ ) ,  FI(-), F(+) 
according as H < -38, -38 < H < 0, 0 < H < 38, 38  < H .  When r = 2 the phases 
FI(+) and FI(-) are degenerate. It may also be seen that at the points 8 = 1.0, Z-? = 
k 3 . 0  the three phases F('), AF(-), FI(') are degenerate for all values of r .  This does not 
affect the behaviour of the system for r < 2 since these points lie in the regions of stability 
of FI(=), but when r > 2 and 8 = 1.0 they correspond to the boundary between FI(') and 
F(=) and lead (at least in our RSRG calculations, see 0 5) to the phase diagrams for 8 = 
1.0, differing from those for 1.0 > 8 > 0.0. 

Let &ma and f b m b  be the magnetisations per lattice site of the a and b sublattices 
respectively and let fbm be the magnetisation per lattice site of the whole lattice. 
Then 

m = (2mb + rma)/3.  ( 2  * 4) 

It is clear that ma,  mb and m are dimensionless magnetisations and for the sake of brevity 
we shall henceforth refer to them as magnetisations. 

In this paper we shall be concerned with ( a )  the form of the phase boundaries in the 
( T ,  Z-?) plane and (b)  the behaviour of the magnetisation m and the isothermal suscep- 
tibility XTfor Z-? = 0, for different values of 8 and r .  The susceptibility is given by 

( 2 . 5 ~ )  

where 
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p o  is the permeability of free space and VO is the area per lattice site. 
Before investigating these using a RSRG method we shall, in 0 3, summarise the exact 

results that can be derived for the model from the known results for the isotropic 
ferromagnetic king (IFI) model. 

3. Exact results 

3.1. 8 = 0.0 ( J o b  = 0, J b b  > 0 )  

This case differs from the standard ferromagnetic honeycomb model only in that there 
are uncoupled ions on the a sites. The effect of these is to augment the magnetisation in 
non-zero field with a paramagnetic contribution. The Curie temperature can be calcu- 
lated from that of the IFI model using the star-triangle transformation (see e.g. Syozi 
1972). The transformation yields 

COSh[2Jbb/(kT)] = i (1  + eXp[4J~/(kT)]} (3.1) 

where JF > 0 is the interaction energy of the IFI model. With the Curie temperature of 
that model given by eXp[4J~/(kT,)] = 3 we have Tc = 1.519 for the Curie temperature 
in this case. 

3.2. 8 = 0.5 (Jbb = - Job  > 0 )  

This and the next case were considered by Bell (1974a, b). When 
ations per lattice site are given by 

= 0 the magnetis- 

ma = -rmF ( 3 . 2 ~ )  

mb = mF (3.26) 

for the a and b sublattices respectively, where mF is the magnetisation per lattice site of 
an IF1 model with magnetic moment per ion c b  and ferromagnetic interaction J b b ,  The 
overall magnetisation per site is 

m = mF(2 - r)/3. (3.3) 

The formula for mF was derived by Wannier (1950) and Houtappel (1950). It can be 
expressed in the form 

where U = exp[-4Jbb/(kT)]. Unless r = 2 the critical temperature is that of the IFI 
model. If we consider the limit A-, O+ then the transition is to a phase for which m > 0. 
If r < 2 we choose the positive sign in (3.4) and the transition is to FI(+); if r > 2 we choose 
the negative sign in (3.4) and the transition is to FI(-). In both cases the critical tem- 
perature is given by 3uc = 1, Tc = 1.820 and below the critical temperature there is a 
first-order transition between ~6 ' )  and FI(-) as A passes through zero. Bell (1974a) used 
an argument of Fisher (1959) to show that, unless r = 2, the critical index yis equal to 
that of the IFI model. When A # 0 the simple mapping between this and the IFI model no 
longer holds. 
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3.3. 8 = 1.0 ( J b b  = 0, J a b  0 )  
In this case the model reduces to a triangular lattice of ions on the a sites which interact 
indirectly via the b sites situated at the centres of each triangle. The model can be related 
to an IFI model on the a sites by means of a modified star-triangle transformation in 
which the partition function is summed over the spin states on the b sites. It is not difficult 
to show that when l? = 0 there is a one-to-one mapping betweenJab/(kT) andJF/(kT). 
This is in contrast to the rather similar KagomC lattice model of Bell (1974b). There a 
dedecoration transformation yielded a mapping which was not one-to-one. The zero- 
field axis of the IFI model mapped both into the zero-field axis of the ferrimagneticmodel 
and into a line in the phase plane where the field was non-zero. For the present model 
the transformation gives 

cosh[2Jab/(kT)] =1{1 i- eXp[2J~/(kT)]} (3.5) 

and we have the critical temperature Fc = 2.405. 
For non-zero field the situation is rather more complicated. The presence of odd- 

degree terms in the Hamiltonian leads to the generation of a three-spin coupling in the 
IFI model as well as the usual two-spin and single-spin terms. In order to obtain a self- 
consistent three-parameter mapping between models we must introduce a three-spin 
coupling between the b-site ions and pairs of neighbouring a-site ions in the ferrimagnetic 
model. Setting this interaction to zero means that we then have a mapping from the 
original model on to a surface Y in the three-dimensional phase space A of the IFI model 
with three-spin coupling. If the critical surfaces in A were known then the critical curves 
of the ferrimagnetic model would be given by their intersections with 9. However the 
only exact information available is on the pure two-spin axis for which there is a first- 
order transition below the Curie temperature and on the pure three-spin axis where 
there is a first-order transition below the Baxter-Wu temperature (Baxter and Wu 1973, 
1974). Parts of the rest of the space have been investigated using renormalisation-group 
methods (Imbro and Hemmer 1976, den Nijs er a1 1976, Schick et a1 1977) but the results 
are by no means decisive. 

Since the work of Bell (1974a, b) was published Baxter (1975) has obtained a formula 
for the three-spin correlation function m ~ 3  of the IFI model in zero field. This allows us 
to obtain the sublattice magnetisations for our model. If the moments of the ions of the 
IFI model are [b we have 

ma = rmF (3.6a) 

where c = cosh[2Jab/(kT)], mF is given by (3.4) and 

(3.6b) 

(3.7) 

(see Baxter 1975). The variable u = exp[-4J~/(kT)] which appears in (3.4) and (3.7) 
is, from ( 3 4 ,  now given by U = (2c - 1)-'. From (2.4), (3.4), (3.6) and (3.7) we are 
able to obtain an expression for the magnetisation m per lattice site. If we consider the 
side of the temperature axis = O+ then m > 0 and at zero temperature since 
I ma I = I mb I = 1, ma = -mb , we see that we must choose mF < 0, >O according as r < 
2, >2. The phase at zero temperature is FI(+), FI(-) according as r < 2, >2. Retaining the 
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choice of sign in (3.4) the formula for m is 

1 /(2c2 - 2c + 1 ~ ( 2 c 2  - 2c - i w 8  m = k - ‘  , \  

3 \  16c3(c - l )3(c2 - c + 1) ’) 
(c’ - 1)1’* [3 + (2c - -  1) (-) c3 + 1 11’ I]. k + c(c -k 1) c3 - c (3.8) 

In the neighbourhood of the critical temperature this has the asymptotic form 

m - T(16/F:)(Fc - T)”’[ (r*  - r )  + (36/F:)(Fc- F ) ]  (3.9) 
where 

Y* = 4 ( f i / 2 ) Y 2 ( 2 f i  - 3) = 1.7276. (3.10) 

The critical exponent /3 has the same value l/8 as for the IFI model unless r = r* when it 
has the value 9/8. 

For r < r* the choice in (3.9) is the lower sign corresponding to mF < 0 (ma < 0, 
mb > 0) and the phase transition is to FI(+), this phase persisting to zero temperature. 
For r > 2 > r* the choice in (3.9) is the upper sign with mF > 0 (ma > 0, mb 0) and the 
phase transition is to FI(-) with this phase persisting to zero temperature. The interesting 
range is r* < r < 2. Here the transition is to FI(-) (mF > 0) but the zero-temperature 
phase is FI(+). A curve representing the transition between these phases must leave the 
zero-field axis at the compensation temperature F* where m = 0. Since ma # 0 (and 
mb # 0) at f = F* these variables must change discontinuously corresponding to a 
first-order phase transition. Curves of magnetisation against temperature derived from 
(3.8) with the appropriate choice of sign are shown in figure 1. 

f 
Figure 1. Curves of the magnetisation per lattice site as a function of temperature derived 
from the exact formula (3.8), for various values of r when 0 = 0 (&b = 0). 
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In general r* = r*(8) is defined to be the value of r as a function of 8 for which the 
transition to the ferrimagnetic phase for I? = O t  or 0- changes between FI(-) and 
FI(-). We know on the basis of the exact results given above that r*(0 .5)  = 2.0 and 
r* (1.0) = 1.7276.  In general we define the compenhation temperature T 4  = T x  ( r ,  0) as 
the point at which a line of first-order FI(-)--FI(-) transitions leaves the zero-field axis. We 
know that T * ( r ,  1.0) exists when r* < r < 2 and from figure 1, we see that T” -+ T, as 
r-+ r* and T” -+ 0 as r +  2. In § 4 we shall investigate r X  and more generally using 
an approximate RSRG procedure. 

4. Renormalisation method 

We use the block-spin transformation employed by Schick et a1 (1977) .  In the most 
general form of this method the triangular lattice is divided into three equivalent 
triangular sublattices A ,  B and C with three different nearest-neighbour interactions 
between pairs of sites on different sublattices and three different magnetic moments for 
the ions on the three sublattices. A three-spin interaction must also be included since it 
is generated by the transformation and, taking into account the trivial interaction, we 
have a transformation with eight variables corresponding to the eight ground states of 
the general model. An initial cluster of nine sites is chosen with three sites belonging to 
each sublattice and periodic boundary conditions are imposed. Application of the RSRG 
transformation reduces the nine-site cluster to a cluster of three sites, one belonging to 
each sublattice. This corresponds to an increase in length scale by a factor V?. The spin 
state on the renormalised d site (a = A ,  B, C) is determined by the spin states on the 
three &-sites in the nine-site cluster using the ‘majority-rule’ weight function. 

The same cluster method has been used by Schick and Griffiths ( 1 9 7 7 )  for the 
three-state Potts model. by Young and Lavis (1979)  and Southern and Lavis (1980)  for 
models with directional bonding, by Southern and Lavis (1979)  for a model of adsorbed 
molecules and by Lavis er a1 (1982)  for the spin-1 Ising model applied to monolayers at 
air/water on oil/water interfaces. Reference could be made to these papers for a more 
detailed account of the method. 

The renormalisation transformation represents a semi-group of transformations in 
the eight-dimensional space of dimensionless couplings. A four-dimensional invariant 
subspace of the transformation is that of the IFI model investigated in detail by Schick et 
a1 (1977) .  Our present model. in which sublattice A is identified with a and B and C 
together with b corresponds to a six-dimensional invariant subspace. Let gat, i = 
1, . . . , 6  be the ground-state Hamiltonians listed in table 1 augmented by a three-spin 
term - QSaSbl Sb2. If the renormalisation procedure is now applied to the six variables 
xL  = exp( -%AL/kT) the transformation equations for x l ,  x 3 ,  x5 are 

x$’xi6 = x:’ + 3xi2xg + 6xi2x9 + l 8 x f x : x i x :  + 9 x ~ x ~ x ~  

(4. l a )  ‘ + 9 x 6  1X3x4Xgx6 4 4 2 2 + 18X:X2XfX~X$X6 

x66xj6 = xi’ + 3x:2x: + 3x:zx: + 9x:x!x$x: + 3x:x:2 + 9XfX3”Xbx: 

+ ~ x ~ x $ ~ x ~  + ~ x : x : x ~ x ~ x : x ~  + I ~ X : X ~ X ~ X : X ~ X :  (4. l b )  

xh6xi6 = xi’ + 3xfx i2  + 6x,6xi2 + 18x;x:xjxf + 9x:x$xf  

(4. IC )  + g X 2  i X 2 X 3 X 4 X g  2 4 4 6 + 18X:X2X:X$X:X6. 
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Those for x 2 ,  x4 and x6 are obtained by the interchanges x1 - x 2 ,  x3 - x4 , x5 t, x 6 .  The 
variable xi, arises from the renormalisation of the trivial interaction referred to above. 
It is determined by the condition that 

6 

2 Oi%Ai = 0 (4.2a) 
i = l  

(see table 1) or equivalently 
6 

n x r  = 1 
i =  1 

(4.2b) 

at each stage of the iteration process, when the U, are the degeneracies given in table 1. 
The variable xo is important for calculating the free energy and its derivatives (see Q 6) 
but plays no part in determining the phase diagram which can be obtained from a 
consideration of the trajectories in the space {xl , x 2 ,  . . . , X g } .  A trajectory which begins 
at a point which is not critical will iterate to a sink which characterises the phase. These 
regions are separated by the critical regions which form domains of attraction for the 
critical fixed points. An interesting computational problem arises in implementing this 
procedure; that is that most of the sinks and some of the critical fixed points have 
locations in the space { x , }  which, while satisfying (4.2b), have some x I  zero and some 
infinite. Our method of overcoming this difficulty is as follows. Equations (4.1) can be 
represented in the form 

ZSX,?> k = 0 , 1 , 2 ,  . . .  (4.3) 
(k+1)6  (k -1 )6  = 

xo XI 

where 2, , i = 1, . . . , 6  are homogeneous polynomials of degree 18, k is an index for a 
succession of points along a trajectory, and condition (4.2b) is satisfied for the coordi- 
nates (x jk ) }k  = 0 , 1 , 2 ,  . . . . Now suppose equations (4.3) are replaced by 

( k +  1)6 ( k +  1)6 - 
20 zi k = 0 , 1 , 2 ,  (4.4) 

where zio) = x y )  , i = 1, , . . 6, but instead of (4.2b) we now impose the condition that the 
largest zi for k = 1 , 2 ,  . . , is unity. This means that ( k )  

The variables zi remain finite along a trajectory and 

where 
6 

( 4 . 6 ~ )  

(4.6b) 

(4.7) 

The fixed points discussed in 0 5 are described in table 2 in terms of their coordinates in 
the space (2 ; ) .  Once these fixed points have been located the recurrence relations can be 
linearised about them and the eigenvalues of the linear equations can be calculated. 
The critical exponents y i  are related to the eigenvalues by Ai =by1 where b is the scale 
factor which is fi in the present calculation. For a sink all the critical exponents are 
negative (irrelevant). A fixed point controlling a critical surface separating two phases 
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Table 2. Fixed points. 

Coordinates 

Name z1 2 2  23 24 25 26 

P 
FIS 
C 
R 
0 
D 
X 

L 
K 
M 

1 .o 
0.0 
0.6907 
1 .o 
1 .o 
1 .o 
0.8910 
1.0 
1.0 
1.0 

1.0 
0.0 
0.6907 
1.0 
1.0 
0.0 
0.0 
0.0 
0.0 
0.0 

1.0 
0.0 
0.6907 
0.5970 
0.0 
0.0 
0.0 
1 .o 
0.0 
0.5970 

1.0 1.0 1 .o 
0.0 1.0 1.0 
0.6907 1.0 1 .o 
0.5970 1.0 1.0 
0.0 1.0 1 .o 
0.0 1 .o 0.0 
0.0 0.8910 1.0 
0.0 0.0 1 .o 
0.0 0.0 1 .o 
0.0 0.0 1 .o 

Relevant exponents 

Even subspace 

0.6381 
0.6179 0.4799 
0.7381 
0.7381 
2.0 0.7381 
0.7381 
2.0 
1.7418 0.6179 

0.7381 0.7381 
2.0 
1.4544 0.5946 
1.7418 0.7381 
2.0 0.7381 

will have one positive (relevant) exponent. An exponent y i  = d = 2 is a necessary 
condition for a first-order phase transition (Nienhuis and Nauenberg 1975) and an 
exponent 1 = d / 2  < y ,  < d = 2 is a necessary condition for divergence of the suscepti- 
bility, In order to determine whether a discontinuity in magnetisation or a singularity in 
the susceptibility actually occurs it is necessary to determine these thermodynamic 
functions using the techniques described in 9 6. 

5. Phase diagrams 

If A =  0 ( Q  = 0) the Hamiltonian contains only even-degree terms. This is a three- 
dimensional invariant subspace of the renormalisation transformation (4. l ) ,  with 
XI  = x2, x3 = x4, xs = x6, which can be represented as the ( T ,  8)  plane. For 0.0 < 
8 s  1.0 the group under which the Hamiltonian is invariant is Y2, the group of two 
elements one of which is the inversion of all spins on the lattice. For 8 = 0 the symmetry 
group of the Hamiltonian is the group of 2('v'3+1) elements YP' C3 Ypl"') C3 . . . 8 Y f Z 3 )  
where Yp) is the group 92 applied to all the sites of sublattice b and Y p )  is the group Y2 
applied to the ith site of sublattice a for i  = 1 , 2 ,  . . . , N/3. This leads to the expectation 
that the transforms to spin ordering for 0 < 8 S 1 will be controlled by one fixed point 
and that for 8 = 0 t y  another. Since 8 = 0.5 ( J b b  = - J a b  > 0 )  can be obtained from the 
IFI model by changing the sign of J a b  and inverting the spins on the a sublattice it is an 
invariant line in the ( T ,  8)  plane. We therefore expect the fixed point which controls the 
ordering transition for 0 < 8 S 1 to be on this line and to have aI: even exponent which 
places it in the universality class of the IFM. These general expectations are confirmed by 
our numerical calculations using the renormalisation transformation (4.1) (see figure 
2). At the high temperatures trajectories iterate to the paramagnetic fixed point P and 
at low temperatures for 8 # 0 trajectories iterate to the fixed point FIS. Neither of these 
has any relevant even exponents (see table 2) and they are therefore sinks relative to the 
plane A = 0. The relevant odd exponent 2.0 of FIS is indicative of the fact that the plane 
A = 0 for T < Tc is a surface of first-order transitions between FI(+) and FI(-). These two 
regions are separated by a critical curve controlled by the fixed point c which lies at 
8 = 0.5, T = 2.703. This temperature is the same as the Curie temperature of the IFM 
obtained by Schick et a1 (1977) as is also the even exponent 0.6381. For 8 = 0 the 
transition is from the paramagnetic phase to a line of coexistence of F and FI. The fixed 
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point controlling this transition is R which lies at 8 = 0.0, T = 1.9385. This fixed point 
has two relevant even exponents 0.6179 and 0.4799, the former being the thermal 
exponent and the latter the exponent which drives trajectories along the critical curve 
to the fixed point c. Trajectories on the line 8 = 0 for subcritical temperatures are driven 
towards the fixed point o at T- = 0. This has one relevant even exponent 0.7381 corre- 
sponding to a continuous transition between F and FI as 8 passes through zero. 

9 

Figure 2. Behaviour of the system in the ( F ,  e )  plane derived from the RSRG calculations. 
The full curve is the critical temperature on which the trajectory flow is towards the fixed 
point c. The broken curves parametrised by I give the values of the compensation tem- 
perature P ( I ,  e). 

For H # 0 the exact calculations of § 4 lead us to expect that there exists an r* (8) 
such that for r lying between r* and 2 there is a temperature T* ( I ,  8) at which a first- 
order FI(+)-FI(-) transition leaves the H = 0 axis. To determine r* as a function of 8 we 
adopted the following strategy. For a fixed value of r we obtained the temperature of the 
FI(+)-FI(-) transition for small H a t  varying values of 8. This gives us a family of curves in 
the (T-, 8) plane (see figure 2) parametrised by r .  The point at which a particular curve 
joins the critical curve then gives us the value of Bfor which this r is r* . From this a curve 
of r* as a function of 8 is obtained (see figure 3). We can distinguish four regions A, B, 
C and D of the ( r ,  8) plane within which the phase diagrams are qualitatively similar. In 
region A ,  where for 0 < 8 d 0.5, r < 2 and for 0.5 < 8 s 1, r < r*,  the ground state for 
0 < fi < 6O/r is FI(+). A typical diagram of this type, with 8 = 1.0, r = 1.0, is given in 
figure 4(a). Below the critical temperature pc( 8) on the zero-field axis there is a first- 
order transition between F$') and FI(-) controlled by the fixed point FIS. The transition 
between FI(+) and F(+) is continuous. It follows the zero-field axis to a temperature 
po(r, 8) and then leaves the axis eventually terminating at T- = 0.0, fi = 68/r .  The fixed 
point controlling this transition is D. Since the one relevant exponent of this fixed point 
is less than unity the transition is not second-order, there being no singularity in the 
susceptibility. Its principal characteristic is that ma passes continuously through zero 
(see 8 6). As r approaches r* from below, T-0 approaches Tc from above. As we cross the 
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curve r = ry  in figure 3 into region B a region of stability of FI(-) makes its appearance. 
Figure 4(b) with 8 = 1 .O, r = 1.9, is a typical diagram of this type. The FI(~)-F(+) transition 
is continuous and still controlled by the fixed point D. This curve coalesces with the line 
of first-order FI(~)-FI(-) transitions which leaves the zero-field axis at the compensation 
temperature T-*, and a curve of continuous FI(-)-F(+) transitions at an end-point con- 
trolled by the fixed point c. The line of first-order transitions is controlled by FIS. The 

e 
Figure 3. The regions A,  B, C and D in the ( r ,  6) plane which exhibit qualitatively different 
phase diagrams. The curve r = r* is derived from figure 2 as described in the text. 

continuous FI(-)-F(*) transition, like the FI(+)-F(+) transition in figure 4(a ) ,  follows the 
zero-field axis above the critical temperature until, in this case, it attains a temperature 
p l ( r ,  0) when it leaves the axis. The fixed point controlling this transition is L. Its one 
relevant exponent is the same as that of D. The transition is weaker than second-order 
and is marked by mb passing through zero. As r tends towards 2 from region B, p* tends 
to zero and when we pass into region C where the stable ground state for 0 < I? < 38  is 
FI(-), As was indicated by our discussion in 0 2 a difference occurs in this region according 
to whether 8 = 1.0 or 1.0 > 8 > 0.0. In the former case the phase bounding between 
FI(-) and F(+) meets the zero-temperature axis at a point where these phases are degener- 
ate with AF(+). The consequence of this is that the fixed point L with equal weights in 
phases 1,3 and 6 controls the FI(-)-F(+) transition for all temperatures. The phase diagram 
would have the same rather uninteresting appearance as figure 4(a) with a weak con- 
tinuous transition, which in this case is marked by mb passing through zero. When 
8 # 1.0 the behaviour changes. A typical diagram of this type, with 8 = 0.5, r = 3.0, is 
given in figure 4(c). The FI(-)-F(+) transition is first-order at low temperatures and is 
controlled by the fixed point K. At high temperatures it is still controlled by L. These two 
parts of the curve join at a point controlled by fixed point M. In region D two types of 
phase behaviour are exhibited. As the region is entered from region C (by, for example, 
reducing r through r* at constant 8) the phase FI(+) appears in the neighbourhood of the 
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Figure 4. Phase diagrams in the ( p ,  fi) plane for (a) 6' = 1 . G ,  r = 1.0; ( b )  6' = 1.0, r = 1.9; 
( c )  6'= 0.5, r = 3.0; (d )  6 = 0.2, r = 3.575; ( e )  6 = 0.2, r = 2.4. Broken curves represent 
first-order phase transitions, full curves are weak continuous transitions across which one or 
both of the sublattice magnetisations pass through zero. 

critical point. A typical phase diagram of this type is given in figure 4 ( 4 ,  where 0 = 0.2,  
r = 3.575. The first-order FI(+)-FI(-) transition is again controlled by FIS with the end- 
point controlled by c. The continuous FI(+)-F(~)  transition is controlled by D. As r is 
further reduced the continuous FI(-)-F(+] transition contracts until the end-points of the 
two first-order transitions coalesce and their meeting point, which is also the end of the 
continuous FI(+)-F(*] transition, is controlled by fixed point X .  A typical diagram of this 
type is given in figure 4(e)  where 0 = 0.2,  r = 2.4. As r is further reduced to 2 the FI(+) 
phase contracts towards the zero-temperature axis and we return to region A. 

It is not difficult to understand why the low-temperature FI(')-F(+) transition is 
continuous while the FI( - ) -F(~)  transition, except when 0 = 1.0, is first-order. In the first 
case the transition involves reversing the spins on the a sublattice. These are non- 
interacting spins. The FI(-)-F(+) transition involves reversing the network of interacting 
spins on the b sublattice. When 8 = 1.0 ( J b b  = 0 )  the spins on the b sublattice are non- 
interacting and in this case a continuous transition is not unexpected. 

6. Thermodynamic functions 

In $ 5  we have referred to the behaviour of the magnetisation on the critical curves in the 
( T ,  A) plane. In this section we describe the method of obtaining this magnetisation 
and the susceptibility. The partition function 2 associated with the initial cluster of nine 



3560 D A Lavis and A G Quinn 

sites is given by 
6 

where 2, are the polynomial functions appearing in (4.3) and (4.4). After the RSRG 
transformation has been applied the partition function 2' associated with the remaining 
cluster of three sites is 

6 

Z' = c U, ( x i  )6 .  (6.2) 

f =  4f' - 3lnx;l (6.3) 

, = I  

Using (4.3) we find that the free energies per site are related by 

wheref= -6 In Z andf '  = -f In Z ' .  Substituting from (4.6b) and iterating (6.3) we 
have 

I 

(6.4) 
1 

f = -2 -1n zhk). 
k = l  3k 

In practice this infinite series converges very quickly and the free energy at the initial 
point do) =,I(') can be obtained after only a few iterations. The sublattice magnetisations 
at the ihtial point on the trajectory are now given by 

m r  = -af/aCT T =  a,  b (6.5) 

where Cr = gTH/kT,  and the overall magnetisation and susceptibility are given by (2.4) 
and (2.5). Curves of magnetisation and inverse susceptibility for typical cases are given 
in figures 5 and 6 respectively. Figure 5 should be compared with the exact results for the 
same case shown in figure 1. The values of the critical temperature and r* differ in these 
two calculations but the curves are qualitatively similar. The curves for magnetisation 
remain of the same general form for 0.5 < 6's 1. When 6' s 0.5 there are of course no 
curves on which there is a compensation temperature at which m = 0. The curves of 
inverse susceptibility shown in figure 6 all have a zero at the critical temperature except 
when r = r* (=1.508 in this case). The value of the critical exponent ycalculated from 
the exponents of fixed point c is 1.424. The absence of a singularity in the susceptibility 
at r = r* is presumably because this value of r is that for which the amplitude of the 
singular term is zero in the same way as the amplitude of the leading term in the 
magnetisation in (3.9) is zero for this value. Given that this model for all 0 < 6' s 1 is in 
fact in the same universality class as 6'= 0.5 then, as indicated above, except when 
r = 2, the exact value of yis that of the IFI model, namely 1.75. Within the context of the 
present method the fixed point controlling the spin-ordering transition on the zero-field 
axis is unaffected by changes in the value of r .  We are therefore unable to obtain a 
different critical exponent yin the case r = 2. 

7. Conclusions 

We have investigated a simple two-dimensional model which, like the ferrites with spinel 
structure, consists of two sublattices of spins with an antiferromagnetic interaction 
between sublattices. Exact results for the isotropic ferromagnetic Ising model allow us 
to deduce the existence of a compensation temperature within a certain range of the 
ratio of magnetic moments. From this we may infer the presence of a first-order phase 
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exact results corresponding to cases of our model with (i) J b b  = - j a b  > 0 and (ii) 
&b = 0, J a b  < 0. He restricted himself to the range r S Nb/Na, where N, and Nb are 
respectively the number of sites on the a and b sublattices, and obtained phase diagrams 
in case (ii) very similar to our own. He posed the question as to whether case (i) or case 
(ii) respresents the typical behaviour for different values of 8and suggested the latter on 
the basis of mean-field calculations. The same question can equally well be asked with 
respect to our model and an answer% clearly given by our RSRG calculations, although 
of course it may be modified by subsequent exact results. For r < Nb/Na = 2 the case 
8 = 1.0 is typical in the range 0.5 < 8 S 1 where we are in region A or B (see figure 3).  
When r > 2, 8 = 1.0 is a special case for which no first-order F(+)-FI(-) transition occurs. 
The case 8 = 0.5 is a special case in the sense that with respect to the whole range of r it 
is unique. It is however typical of the region C for r > 2 and of region A for r < 2. The 
types of behaviour exhibited in figures 4(d )  and 4(e) for region D do not occur for any 
values of r for either of the two cases 8 = 0.5 or 8 = 1.0. 

It is well known that RSRG methods of the type used here, where relatively few sites 
are divided into sublattices, give rather poor agreement with exact results for ferro- 
magnetic critical temperatures and exponents. This deficiency of the method carries 
over to our investigation of ferrimagnets. We have nevertheless been able to predict the 
existence of compensation temperatures and obtain curves for the inverse susceptibility 
above the critical temperature which are, as in real ferrimagnetic systems, concave 
towards the temperature axis. We have also been able to delineate regions of the ( r ,  e) 
plane characterised by distinct critical behaviour. Qualitative agreement with the exact 
results for 8 = 1 .O leads us to suppose a general validity for our results. 
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