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An Ising ferrimagnetic model on a triangular lattice

D A Lavis and A G Quinn

Mathematics Department, Chelsea College, University of London, 552 King’s Road,
London SW10, UK

Received 24 December 1982

Abstract. We study a two-dimensional Ising model on a triangular lattice for which the lattice
is divided into two sublattices, a honeycomb populated by ions of one species which interact
with each other ferromagnetically and the remaining interstitial sites occupied by ions of
different magnetic moment which interact with the first species antiferromagnetically. Exact
results for the critical temperature and magnetisation on the zero-field axis are derived in
special cases from the known results for the isotropic ferromagnetic Ising model. A real-
space renormalisation method is used to obtain phase diagrams in the field-temperature
plane together with the magnetisation and susceptibility on the zero-field axis. These latter
exhibit the characteristic features of a ferrimagnetic system.

1. Introduction

Solids which have a net magnetic moment due to the incomplete cancellation of anti-
ferromagnetically arranged spins are called ‘ferrimagnets’ of which a significant
subgroup are the ferrites, these being ferromagnetic oxides with iron as their main
metallic component. As was first shown by Néel (see e.g. Néel 1948, 1953) the magnetic
ions in a ferrimagnet are situated at the sites of non-equivalent sublattices. In, for
example, ferrites with spinel structure the lattice divides into two sublattices, one
consisting of twice as many sites as the other. In ferrimagnets the exchange interactions
are predominantly indirect. Differences in exchange energies between ions on different
sublattices arise either because the lattice sites are occupied by ions of different types or
because of the effects of different environments of non-magnetic atoms (see e.g. Wolf
1961, Martin 1967). One characteristic property of ferrimagnets is the shape of the
inverse zero-field susceptibility curve above the critical temperature. Unlike the case of
a ferromagnet this is normally concave towards the temperature axis and its high-
temperature asymptote intercepts the axis at a point below the critical temperature.
Another property of many ferrimagnets is the occurrence of a compensation tempera-
ture. This is a point on the zero-field axis below the critical temperature at which the
magnetisation falls to zero owing to the cancellation of the sublattice magnetisations.
In this paper we consider a simple ferrimagnetic model on a triangular lattice of N
sites. The lattice is divided into a honeycomb sublattice b of 2N/3 sites and the triangular
sublattice a consisting of the remaining N/3 sites of the original lattice. The sites of
sublattices a and b are occupied by ions of magnetic moments §, and &, respectively.
The nearest-neighbour exchange energies are —J,, and —J,, for b-b and a-b pairs
respectively (there are of course no nearest-neighbour a—a pairs of sites). The interaction
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within the b sublattice is ferromagnetic (J,, > 0) and the interaction between sublattices
is antiferromagnetic (J,, < 0). We shall also consider the two limiting cases where either
Jus or Js, but not both, is zero. This is a model which has been considered by Bell
(1974a, b) using high-temperature series expansions and, in some special cases, exact
results. The purpose of this paper is to extend Bell’s analysis of the exact results and to
develop a real-space renormalisation-group (RSRG) method for the model.

2. Detailed model

Let an elementary nearest-neighbour triangle of the lattice consist of an a site with an
ioninspinstate §, and twobsitesbl and b2 withionsin spin states Sp; and Sy, respectively.
The possible values of S,, Su; and Sy, are +1 and —1 corresponding respectively to
parallel and antiparallel alignment to the external magnetic field H. The Hamiltonian
of the system is then

% =2 Ha (2.1a)
where 4

Ha=—[4(aSaSo1 + JabSaSe2 + JooSb1S2) + $H(ES: + 5Sb1 + 5S62)] (2.1b)

and the sum is over all the elementary triangles of the lattice.

The six possible ground states of the system are listed in table 1. The phases F*) and
F) are ferromagnetic, F*) being more or less stable than F(™) at zero temperature
according as the external magnetic field is greater or less than zero. When H = 0 the

ferromagnetic phase is denoted by F. The degeneracy of this phase is 2 and it can be
considered as the coexistence between large regions of the lattice in phases F**) and F(7).

The phases AF(*) and AF(™) are antiferromagnetic with respect to the spin alignment

Table 1. The ground states of the system.

Name Configuration Degeneracy oy  Hamiltonian ¥ per A

b1

1

(D™ 1 ~3(2Jw + Job)

—dH(28: + &)

*

<

(2) o) - - 1 —42Jw + Jbb)
+4H (28, + &)
+1 -1
(3) AR v 2 +4w — 2HE,
R
(4) AR "v* 2 +4/u + EHE,
-1
“ “
(5) v | K2~ Ju)
3 "%H(ng_ Ea)
-1 -1
(6) F1¢) v 1 +4(2V s — Job)

A +HH(28, - &)
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the b sublattice, AF(*) being more or less stable than AF(™) at zero temperature according
as the external field is greater or less than zero. When H = O the antiferromagnetic phase
is denoted by AF. In this phase the directions of the spins on sublattice a are random.
Except in the special case J,, = Jub the degeneracy of this phase is 2¢ V%, When J,;, =
Jup the distinction between sublattice sites disappears and we have the standard anti-
ferromagnetic Ising model with ground-state degeneracy (1.38135)Y (Wannier 1950).
The phases £ and F1) are ferrimagnetic. When 2&, > &, F1'*) is more or less stable
than FI{) at zero temperature according as the external field is greater or less than zero.
If 2&, < &, the converse is the case. When H = 0 or 2§, = §, the ferrimagnetic phase is
denoted by FI. This phase again has a degeneracy of 2 and consists of large regions of
coexistence of FI'") and FI{™), We define the parameters

8= Jao/ (Jab = Jiv) (2.2a)
and

r=5/& (2.2b)
and the reduced temperature and field variables

T=kT/(Job = Jav) (2.3a)
and

H=§H/(Joo —Ja) (2.3b)

respectively where k is Boltzmann’s constant and T is the thermodynamic temperature.
As indicated in § 1 we shall take 0 < 8= 1 for which the stable ground state at H =
0 is FI. In terms of the parameter r the stable ground states, with H # 0, can be
obtained from table 1. They are, for r <2, ¥, F17), FI™), F*") according as H <
-60/r, —68/r<H<0, 0< H<68/r, 66/r<H and, for r>2, ¢, g™, gD, g
according as H < —36, —36<H <0, 0< H<36, 30 <H. When r =2 the phases
FI™) and Fi©) are degenerate. It may also be seen that at the points 6= 1.0, H =
+3.0 the three phases F*), AF®), F1'™) are degenerate for all values of r. This does not
affect the behaviour of the system for » < 2 since these points lie in the regions of stability
of FI*®), but when r > 2 and 6 = 1.0 they correspond to the boundary between F1‘*) and
F'*) and lead (at least in our RSRG calculations, see § 5) to the phase diagrams for 6 =
1.0, differing from those for 1.0 > 6 > 0.0.

Let &, m, and &, m, be the magnetisations per lattice site of the a and b sublattices

respectively and let §,m be the magnetisation per lattice site of the whole lattice.
Then

m= (2my + rm,)/3. (2.4)

Itis clear that m, , m, and m are dimensionless magnetisations and for the sake of brevity
we shall henceforth refer to them as magnetisations.

In this paper we shall be concerned with (a) the form of the phase boundaries in the

(T, H) plane and (b) the behaviour of the magnetisation m and the isothermal suscep-
tibility yr for H = 0, for different values of 8and r. The susceptibility is given by

xr=xo(dm/6H)1 (2.50)
where
%0 = §8/[1oVo(Joo = Ja) . (2.5b)
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Uois the permeability of free space and Vy is the area per lattice site.

Before investigating these using a RSRG method we shall, in § 3, summarise the exact
results that can be derived for the model from the known results for the isotropic
ferromagnetic Ising (1F1) model.

3. Exact results

31.8=0.0(Jp=0,Jpp>0)

This case differs from the standard ferromagnetic honeycomb model only in that there
are uncoupled ions on the a sites. The effect of these is to augment the magnetisation in
non-zero field with a paramagnetic contribution. The Curie temperature can be calcu-
lated from that of the IFI model using the star-triangle transformation (see e.g. Syozi
1972). The transformation yields

cosh[2Ju/(kT)] = #{1 + exp[4J¢/(kT)]} (3.1

where Jr > 0 is the interaction energy of the 1,1 model. With the Curie temperature of
that model given by exp[4Jr/(kT.)] = 3 we have T, = 1.519 for the Curie temperature
in this case.

32.0=05(Jp=—Jp>0)

This and the next case were considered by Bell (1974a, b). When H = 0 the magnetis-
ations per lattice site are given by

m, = —rme (3.20)
My = Mg (32b)

for the a and b sublattices respectively, where mg is the magnetisation per lattice site of
an IF1 model with magnetic moment per ion &, and ferromagnetic interaction Jy;,. The
overall magnetisation per site is

m=mg(2 - r)/3. (3.3)

The formula for my was derived by Wannier (1950) and Houtappel (1950). It can be
expressed in the form

mg= =

((1 +u)(d - 3u)>1/8 (3.4)

(1 —u)*(1 +3u)

where u = exp[—4Ju/(kT)]. Unless r = 2 the critical temperature is that of the IFI
model. If we consider the limit 4 — 0+ then the transition is to a phase for which m > 0.
If r < 2 we choose the positive sign in (3.4) and the transition is to F1*; if r > 2 we choose
the negative sign in (3.4) and the transition is to FI”). In both cases the critical tem-
perature is given by 3u. = 1, T, = 1.820 and below the critical temperature there is a
first-order transition between Fi**) and F1{~) as H passes through zero. Bell (1974a) used
an argument of Fisher (1959) to show that, unless r = 2, the critical index y is equal to
that of the IFt model. When H # 0 the simple mapping between this and the IFt model no
longer holds.
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3.3.0=1.0(Jpp=0,Js<0)

In this case the model reduces to a triangular lattice of ions on the a sites which interact
indirectly via the b sites situated at the centres of each triangle. The model can be related
to an 1F! model on the a sites by means of a modified star—triangle transformation in
which the partition function is summed over the spin states on the b sites. It is not difficult
to show that when A = 0 there is a one-to-one mapping between J,,/(kT) and Jg/(kT).
This is in contrast to the rather similar Kagomé lattice model of Bell (1974b). There a
dedecoration transformation yielded a mapping which was not one-to-one. The zero-
field axis of the IF1 model mapped both into the zero-field axis of the ferrimagnetic model
and into a line in the phase plane where the field was non-zero. For the present model
the transformation gives

cosh[2J,/(kT)] = 3{1 + exp[2J¢/(KT)]} (3.5)

and we have the critical temperature T, = 2.405.

For non-zero field the situation is rather more complicated. The presence of odd-
degree terms in the Hamiltonian leads to the generation of a three-spin coupling in the
IFI model as well as the usual two-spin and single-spin terms. In order to obtain a self-
consistent three-parameter mapping between models we must introduce a three-spin
coupling between the b-site ions and pairs of neighbouring a-site ions in the ferrimagnetic
model. Setting this interaction to zero means that we then have a mapping from the
original model on to a surface & in the three-dimensional phase space A of the 1F1 model
with three-spin coupling. If the critical surfaces in A were known then the critical curves
of the ferrimagnetic model would be given by their intersections with . However the
only exact information available is on the pure two-spin axis for which there is a first-
order transition below the Curie temperature and on the pure three-spin axis where
there is a first-order transition below the Baxter—Wu temperature (Baxter and Wu 1973,
1974). Parts of the rest of the space have been investigated using renormalisation-group
methods (Imbro and Hemmer 1976, den Nijs et a/ 1976, Schick et al 1977) but the results
are by no means decisive.

Since the work of Bell (1974a, b) was published Baxter (1975) has obtained a formula
for the three-spin correlation function mg; of the IFl model in zero field. This allows us
to obtain the sublattice magnetisations for our model. If the moments of the ions of the
IFI model are §, we have

m, = rmg (3.6a)
c—=1\/c—1\V2[ 3mgc

= - 3.6b

o <2c - 1> (c + 1) [(c -1) mm} ( )
where ¢ = cosh[2J,/(kT)], mg is given by (3.4) and
1+u 1+ 3u\12

= - 3.7

e ’”‘{3(1 =) 2((1 - u)3> } G

(see Baxter 1975). The variable u = exp[—4J¢/(kT)] which appears in (3.4) and (3.7)
is, from (3.5), now given by u = (2¢ ~ 1)72. From (2.4), (3.4), (3.6) and (3.7) we are
able to obtain an expression for the magnetisation m per lattice site. If we consider the
side of the temperature axis H =0+ then m >0 and at zero temperature since
|m,| = |my| = 1, my = —my,, we see that we must choose mg < 0, >0 according as r <
2, >2. The phase at zero temperature is FI**), FI”) according as r < 2, >2. Retaining the
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choice of sign in (3.4) the formula for m is
1((2c2 -2c+1)*(2c* = 2¢ - 1))1/8

m=E T ed - e+ D)

x {r+%[3+(20--1)<thi>l/2:”. (3.8)
In the neighbourhood of the critical temperature this has the asymptotic form

m~x(16/TE) (T~ T)*[(r* = r) + 36/TH(T.~ T)] 3.9)
where

r* =4(V3/2)*(2V3 - 3) = 1.7276. (3.10)

The critical exponent 8 has the same value 1/8 as for the 1F1 model unless 7 = r* when it
has the value 9/8.

For r < r* the choice in (3.9) is the lower sign corresponding to mg <0 (m, <0,
my, > 0) and the phase transition is to FI{*), this phase persisting to zero temperature.
For r > 2 > r* the choice in (3.9) is the upper sign with mg > 0 (m, > 0, my, < 0) and the
phase transition is to F1¢~) with this phase persisting to zero temperature. The interesting
range is r* < r < 2. Here the transition is to FI*"”) (mg > 0) but the zero-temperature
phase is FI'"), A curve representing the transition between these phases must leave the
zero-field axis at the compensation temperature 7* where m = 0. Since m, # 0 (and
my, # 0) at T = T* these variables must change discontinuously corresponding to a
first-order phase transition. Curves of magnetisation against temperature derived from
(3.8) with the appropriate choice of sign are shown in figure 1.

o
30
a3t 0
I
02 b -
01 172% 1
20
19
0 10 20 30 0
r

Figure 1. Curves of the magnetisation per lattice site as a function of temperature derived
from the exact formula (3.8), for various values of »r when 8 = 0 (Jy, = 0).
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In general r* = r*(8) is defined to be the value of r as a function of 6 for which the
transition to the ferrimagnetic phase for H = 0+ or 0— changes between F1‘”) and
FI*”). We know on the basis of the exact results given above that r*(0.5) = 2.0 and
7*(1.0) = 1.7276. In general we define the compensation temperature 7* = T*(r, 8) as
the point at which a line of first-order Fi' -1 transitions leaves the zero-field axis. We
know that T*(r, 1.0) exists when r* <r < 2 and from figure 1, we see that 7% — T, as
r— r*and T*— 0 as r— 2. In § 4 we shall investigate * and T* more generally using
an approximate RSRG procedure.

4. Renormalisation method

We use the block-spin transformation employed by Schick er al (1977). In the most
general form of this method the triangular lattice is divided into three equivalent
triangular sublattices A, B and C with three different nearest-neighbour interactions
between pairs of sites on different sublattices and three different magnetic moments for
the ions on the three sublattices. A three-spin interaction must also be included since it
is generated by the transformation and, taking into account the trivial interaction, we
have a transformation with eight variables corresponding to the eight ground states of
the general model. An initial cluster of nine sites is chosen with three sites belonging to
each sublattice and periodic boundary conditions are imposed. Application of the RSRG
transformation reduces the nine-site cluster to a cluster of three sites, one belonging to
each sublattice. This corresponds to an increase in length scale by a factor /3. The spin
state on the renormalised o site (o« = A, B, C) is determined by the spin states on the
three a-sites in the nine-site cluster using the ‘majority-rule’ weight function.

The same cluster method has been used by Schick and Griffiths (1977) for the
three-state Potts model, by Young and Lavis (1979) and Southern and Lavis (1980) for
models with directional bonding, by Southern and Lavis (1979) for a model of adsorbed
molecules and by Lavis et al (1982) for the spin-1 Ising model applied to monolayers at
air/water on oil/water interfaces. Reference could be made to these papers for a more
detailed account of the method.

The renormalisation transformation represents a semi-group of transformations in
the eight-dimensional space of dimensionless couplings. A four-dimensional invariant
subspace of the transformation is that of the IFI model investigated in detail by Schick ez
al (1977). Our present model, in which sublattice A is identified with a and B and C
together with b corresponds to a six-dimensional invariant subspace. Let ¥,;, i =
1,..., 6 be the ground-state Hamiltonians listed in table 1 augmented by a three-spin
term —QS, ibl Sz . If the renormalisation procedure is now applied to the six variables
x; = exp(—¥a;/kT) the transformation equations for x,, x3, x5 are

x08x1® = x}® + 3xl%xf + 6x1%x8 + 18xfxdxix? + 9xfxdxd

"+ OxSxdxdxixd + 18xSxaxSxdxdxg (4.1a)
x68x3% = 48 + 3x8Px§ + 3x1%x8 + Oxdxdxdxd + 3xfxl2 + Oxixbxix?
+ Oxtxilxé + Ixdxdxdxixiad + 18x3x,x§xixsxl (4.1b)
x08x58 = x18 + 3x%x1? + 6x§xl? + 18x3x3xdxd + Oxdxdx?

+ Oxix3xixixd + 18x3x,xdx8xdx,. (4.1¢)

C18—K
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Those for x;, x4 and x¢ are obtained oy the interchanges x; < x;, x3 <> x4, X5 < x¢. The
variable x{ arises from the renormalisation of the trivial interaction referred to above.
It is determined by the condition that

6
2 0 Fa; =0 (4.2a)

(see table 1) or equivalently

6
[lxe =1 (4.2b)

at each stage of the iteration process, when the w; are the degeneracies given in table 1.
The variable xg is important for calculating the free energy and its derivatives (see § 6)
but plays no part in determining the phase diagram which can be obtained from a
consideration of the trajectories in the space {x;, xz, . . . , x¢}. A trajectory which begins
at a point which is not critical will iterate to a sink which characterises the phase. These
regions are separated by the critical regions which form domains of attraction for the
critical fixed points. An interesting computational problem arises in implementing this
procedure; that is that most of the sinks and some of the critical fixed points have
locations in the space {x;} which, while satisfying (4.2b), have some x; zero and some
infinite. Our method of overcoming this difficulty is as follows. Equations (4.1) can be
represented in the form

xf T xE T = Z(x) k=0,1,2,... (4.3)
where Z,,i =1, ..., 6 are homogeneous polynomials of degree 18, k is an index for a
succession of points along a trajectory, and condition (4.2b) is satisfied for the coordi-
nates {x*}k =0,1,2,. ... Now suppose equations (4.3) are replaced by

2 D8 ks 16 Z,-(z,(k)) k=0,1,2,... (4.4)
where 2\ =xf-°) ,i=1,...6,butinstead of (4.2b) we now impose the condition that the
largest 2 fork=1,2,...is unity. This means that

z(()k*‘l) = [Zmax(zj(k))]l/é_ (4.5)
The variables z; remain finite along a trajectory and

x = 70/ q® i=1,...,6 (4.6a)

X = q® 289/ atk-13 (4.6b)

where

6
\ 16
o = (H z,(")‘”') ' “.7)

i=

The fixed points discussed in § 5 are described in table 2 in terms of their coordinates in
the space {z;}. Once these fixed points have been located the recurrence relations can be
linearised about them and the eigenvalues A, of the linear equations can be calculated.
The critical exponents y; are related to the eigenvalues by A; =b* where b is the scale
factor which is V3 in the present calculation. For a sink all the critical exponents are
negative (irrelevant). A fixed point controlling a critical surface separating two phases
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Table 2. Fixed points.

Relevant exponents

Coordinates
Name z; z2 z3 Z4 Zs 26 Even subspace
P 1.0 1.0 1.0 1.0 1.0 1.0 0.7381 0.7381
FIS 0.0 0.0 0.0 0.0 1.0 1.0 2.0
C 0.6907 0.6907 0.6907 0.6907 1.0 1.0 0.6381 1.4544  0.5946
R 1.0 1.0 0.5970 0.5970 1.0 1.0 0.6179 0.4799 1.7418 0.7381
o 1.0 1.0 0.0 0.0 1.0 1.0 10.7381 2.0 0.7381
D 1.0 0.0 0.0 0.0 1.0 0.0 0.7381
X 0.8910 0.0 0.0 0.0 0.8910 1.0 2.0 0.7381
L 1.0 0.0 1.0 0.0 0.0 1.0 0.7381
K 1.0 0.0 0.0 0.0 0.0 1.0 2.0
M 1.0 0.0 0.5970 0.0 0.0 1.0 1.7418 0.6179

will have one positive (relevant) exponent. An exponent y;=d =2 is a necessary
condition for a first-order phase transition (Nienhuis and Nauenberg 1975) and an
exponent 1 = d/2 < y; < d = 2 is a necessary condition for divergence of the suscepti-
bility. In order to determine whether a discontinuity in magnetisation or a singularity in
the susceptibility actually occurs it is necessary to determine these thermodynamic
functions using the techniques described in § 6.

5. Phase diagrams

If H=0 (Q = 0) the Hamiltonian contains only even-degree terms. This is a three-
dimensional invariant subspace of the renormalisation transformation (4.1), with
X1 =X, X3 = X4, Xs = X¢, Which can be represented as the (7, ) plane. For 0.0 <
6 < 1.0 the group under which the Hamiltonian is invariant is ¥,, the group of two
elements one of which is the inversion of all spins on the lattice. For 6 = 0 the symmetry
group of the Hamiltonian is the group of 2™3*D elements ¥ @ ¥ ® .. . ® ¥
where #Y is the group ¥, applied to all the sites of sublattice b and ¥ is the group ¥,
applied to the ith site of sublattice a fori = 1,2,. .., N/3. This leads to the expectation
that the transforms to spin ordering for 0 < 8 < 1 will be controlled by one fixed point
and that for 8 = 0 by another. Since 8 = 0.5 (Jy, = —Ja» > 0) can be obtained from the
IF1 model by changing the sign of J,;, and inverting the spins on the a sublattice it is an
invariant line in the (7, 8) plane. We therefore expect the fixed point which controls the
ordering transition for 0 < 8= 1 to be on this line and to have an even exponent which
places itin the universality class of the IFM. These general expectations are confirmed by
our numerical calculations using the renormalisation transformation (4.1) (see figure
2). At the high temperatures trajectories iterate to the paramagnetic fixed point p and
at low temperatures for 6 # 0 trajectories iterate to the fixed point Fis. Neither of these
has any relevant even exponents (see table 2) and they are therefore sinks relative to the
plane H = 0. The relevant odd exponent 2.0 of Fis is indicative of the fact that the plane
H = 0for T < T.is a surface of first-order transitions between F1*) and F1{~), These two
regions are separated by a critical curve controlled by the fixed point C which lies at
6= 0.5, T = 2.703. This temperature is the same as the Curie temperature of the IFM
obtained by Schick et al (1977) as is also the even exponent 0.6381. For 8= 0 the
transition is from the paramagnetic phase to a line of coexistence of F and F1. The fixed
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point controlling this transition is R which lies at 8= 0.0, T = 1.9385. This fixed point
has two relevant even exponents 0.6179 and 0.4799, the former being the thermal
exponent and the latter the exponent which drives trajectories along the critical curve
to the fixed point €. Trajectories on the line 6 = 0 for subcritical temperatures are driven
towards the fixed point 0 at 7' = 0. This has one relevant even exponent 0.7381 corre-
sponding to a continuous transition between F and FI as 8 passes through zero.

L0r 1

~

Figure 2. Behaviour of the system in the (T, 8) plane derived from the RSRG calculations.
The full curve is the critical temperature on which the trajectory flow is towards the fixed
point C. The broken curves parametrised by r give the values of the compensation tem-
perature T* (7, 6).

For H # 0 the exact calculations of § 4 lead us to expect that there exists an r*(6)
such that for r lying between r* and 2 there is a temperature 7*(r, §) at which a first-
order Fi**)-F1") transition leaves the H = 0 axis. To determine r* as a function of 8 we
adopted the following strategy. For a fixed value of r we obtained the temperature of the

FI")—F17) transition for small H at varying values of 8. This gives us a family of curves in
the (T, 9) plane (see figure 2) parametrised by r. The point at which a particular curve
joins the critical curve then gives us the value of 8 for which this 7is 7*. From this a curve
of r* as a function of §is obtained (see figure 3). We can distinguish four regions A, B,
Cand D of the (7, 8) plane within which the phase diagrams are qualitatively similar. In
region A, where for 0 < 6 <0.5,r <2and for 0.5 < §=< 1, r <r*, the ground state for
0<H< 6B/r is FI'"). A typical diagram of this type, with 6 = 1. O r= 1.0, is given in
figure 4(a). Below the critical temperature T,(8) on the zero-field axis there is a first-
order transition between F1‘*) and F1{™) controlled by the fixed point Fis. The transition
between FI'*) and F*) is continuous. It follows the zero-field axis to a temperature
To(r, 6) and then leaves the axis eventually terminating at 7 = 0.0, H = 66/r. The fixed
point controlling this transition is D. Since the one relevant exponent of this fixed point
is less than unity the transition is not second-order, there being no singularity in the
susceptibility. Its principal characteristic is that m, passes continuously through zero
(see § 6). As rapproaches r* from below, T, approaches 7T, from above. As we cross the
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curve 7 = r* in figure 3 into region B a region of stability of FI' ) makes its appearance.
Figure 4(b) with 8 = 1.0, 7 = 1.9, isatypical diagram of this type. The F1'")~F(*) transition
is continuous and still controlled by the fixed point D. This curve coalesces with the line
of first-order F1'*)-F1(™) transitions which leaves the zero-field axis at the compensation
temperature T*, and a curve of continuous FI'-F(*) transitions at an end-point con-
trolled by the fixed point C. The line of first-order transitions is controlled by Fis. The

6.0

50

40F

30

20

Figure 3. The regions A, B, C and D in the (7, 8) plane which exhibit qualitatively different
phase diagrams. The curve r = r* is derived from figure 2 as described in the text.

continuous FI'7=F{™) transition, like the FI*")~F*) transition in figure 4(a), follows the
zero-field axis above the critical temperature until, in this case, it attains a temperature
T1(r, 6) when it leaves the axis. The fixed point controlling this transition is L. Its one
relevant exponent is the same as that of D. The transition is weaker than second-order
and is marked by m;, passing through zero. As r tends towards 2 from region B, 7* tends
to zero and when we pass into region C where the stable ground state for 0 < H < 360is
FI'7). As wasindicated by our discussion in § 2 a difference occurs in this region according
to whether 6 =1.0 or 1.0 > 6> 0.0. In the former case the phase bounding between
FI*) and F") meets the zero-temperature axis at a point where these phases are degener-
ate with AF*). The consequence of this is that the fixed point L with equal weights in
phases 1,3 and 6 controls the FI' (") transition for all temperatures. The phase diagram
would have the same rather uninteresting appearance as figure 4(a) with a weak con-
tinuous transition, which in this case is marked by m, passing through zero. When
6 # 1.0 the behaviour changes. A typical diagram of this type, with 8= 0.5, r = 3.0, is
given in figure 4(c). The F1'7)—F*) transition is first-order at low temperatures and is
controlled by the fixed point K. At high temperatures it is still controlled by L. These two
parts of the curve join at a point controlled by fixed point M. In region D two types of
phase behaviour are exhibited. As the region is entered from region C (by, for example,
reducing r through r* at constant 6) the phase FI'*) appears in the neighbourhood of the
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Figure 4. Phase diagrams in the (7, H) plane for (@) 8 = 1.6, r = 1.0; (b) 6= 1.0, r = 1.9;
(¢) 8=0.5,r=3.0;(d) 8=0.2, r=3.575; (¢) 6= 0.2, r = 2.4. Broken curves represent
first-order phase transitions, full curves are weak continuous transitions across which one or
both of the sublattice magnetisations pass through zero.

critical point. A typical phase diagram of this type is given in figure 4(d), where 8 = 0.2,
r = 3.575. The first-order FIi*")-F1¢™) transition is again controlled by Fis with the end-
point controlled by ¢. The continuous FI'"'-F(*) transition is controlled by D. As 7 is
further reduced the continuous FI'”-F{*) transition contracts until the end-points of the
two first-order transitions coalesce and their meeting point, which is also the end of the
continuous FI{")-F(*) transition, is controlled by fixed point X. A typical diagram of this
type is given in figure 4(e) where 8 = 0.2, r = 2.4. As r is further reduced to 2 the FI*)
phase contracts towards the zero-temperature axis and we return to region A.

It is not difficult to understand why the low-temperature FI"'—F(*) transition is
continuous while the FI'—F*) transition, except when 6 = 1.0, is first-order. In the first
case the transition involves reversing the spins on the a sublattice. These are non-
interacting spins. The FI'”—F(*) transition involves reversing the network of interacting
spins on the b sublattice. When 8 = 1.0 (J,, = 0) the spins on the b sublattice are non-
interacting and in this case a continuous transition is not unexpected.

6. Thermodynamic functions
In § 5 we have referred to the behaviour of the magnetisation on the critical curvesin the

(T, H) plane. In this section we describe the method of obtaining this magnetisation
and the susceptibility. The partition function Z associated with the initial cluster of nine
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sites is given by

6
Z= ; (DiZi(Xj) (61)

where Z; are the polynomial functions appearing in (4.3) and (4.4). After the RSRG
transformation has been applied the partition function Z' associated with the remaining

cluster of three sites is
6

zZ' = 21 w;(x)°. (6.2)
Using (4.3) we find that the free energies per site are related by
f=3f"-%Inx) (6.3)

where f= —41In Z and f' = —3In Z’. Substituting from (4.65) and iterating (6.3) we
have

- 1
f=-2 k; izt (6.4)

In practice this infinite series converges very quickly and the free energy at the initial
pointx(” =z can be obtained after only a few iterations. The sublattice magnetisations
at the initial point on the trajectory are now given by

m,= —3f/d¢, T=a,b (6.5)

where &, = & H/kT, and the overall magnetisation and susceptibility are given by (2.4)
and (2.5). Curves of magnetisation and inverse susceptibility for typical cases are given
in figures 5 and 6 respectively. Figure 5 should be compared with the exact results for the
same case shown in figure 1. The values of the critical temperature and r* differ in these
two calculations but the curves are qualitatively similar. The curves for magnetisation
remain of the same general form for 0.5 < 8= 1. When 6 < 0.5 there are of course no
curves on which there is a compensation temperature at which m = 0. The curves of
inverse susceptibility shown in figure 6 ail have a zero at the critical temperature except
when r = r* (=1.508 in this case). The value of the critical exponent y calculated from
the exponents of fixed point € is 1.424. The absence of a singularity in the susceptibility
at r = r* is presumably because this value of r is that for which the amplitude of the
singular term is zero in the same way as the amplitude of the leading term in the
magnetisation in (3.9) is zero for this value. Given that thismodel forall0 < 8=<1lisin
fact in the same universality class as 6 = 0.5 then, as indicated above, except when
r = 2, the exact value of yis that of the IFt model, namely 1.75. Within the context of the
present method the fixed point controlling the spin-ordering transition on the zero-field
axis is unaffected by changes in the value of r. We are therefore unable to obtain a
different critical exponent yin the case r = 2.

7. Conclusions

We have investigated a simple two-dimensional model which, like the ferrites with spinel
structure, consists of two sublattices of spins with an antiferromagnetic interaction
between sublattices. Exact results for the isotropic ferromagnetic Ising model allow us
to deduce the existence of a compensation temperature within a certain range of the
ratio of magnetic moments. From this we may infer the presence of a first-order phase
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Figure 5. Curves of magnetisation per lattice site asa function of temperature, derived from
the RSRG calculations for various values of r when 8 = 0 (Ju, = 0).

transition leaving the zero-field axis at this point. The RSRG method which we have used

is of course an approximation but its results are in qualitative agreement with the exact
results.

Using a different but similar model based on a Kagomé lattice Bell (1974b) obtained

200r

150r

%o/ %

0

Figure 6. Curves of reduced inverse isothermal susceptibility as a function of temperature
derived from the RSRG calculations for various values of r when 8 = 0 (Jus = 0).
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exact results corresponding to cases of our model with (i) Jo, = —Ju > 0 and (ii)
Jwo =0, Jap < 0. He restricted himself to the range r < Ny/N,, where N, and N, are
respectively the number of sites on the a and b sublattices, and obtained phase diagrams
in case (ii) very similar to our own. He posed the question as to whether case (i) or case
(ii) respresents the typical behaviour for different values of 6 and suggested the latter on
the basis of mean-field calculations. The same question can equally well be asked with
respect to our model and an answer is clearly given by our RSRG calculations, although
of course it may be modified by subsequent exact results. For r < Ny/N, = 2 the case
6 = 1.0 s typical in the range 0.5 < 6 =< 1 where we are in region A or B (see figure 3).
When r > 2, 8 = 1.0is a special case for which no first-order F*-1(™) transition occurs.
The case 8 = 0.5 is a special case in the sense that with respect to the whole range of r it
is unique. It is however typical of the region C for r > 2 and of region A for r < 2. The
types of behaviour exhibited in figures 4(d) and 4(e) for region D do not occur for any
values of r for either of the two cases 8 = 0.5 or 8 = 1.0.

It is well known that RSRG methods of the type used here, where relatively few sites
are divided into sublattices, give rather poor agreement with exact results for ferro-
magnetic critical temperatures and exponents. This deficiency of the method carries
over to our investigation of ferrimagnets. We have nevertheless been able to predict the
existence of compensation temperatures and obtain curves for the inverse susceptibility
above the critical temperature which are, as in real ferrimagnetic systems, concave
towards the temperature axis. We have also been able to delineate regions of the (r, 6)
plane characterised by distinct critical behaviour. Qualitative agreement with the exact
results for 8 = 1.0 leads us to suppose a general validity for our results.
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